Graph Two-sample Testing with Node Embeddings

¹ Computer Science and Engineering

Qiucheng Wu¹

 $\mu = 0, \quad \sigma^2 = 0.2,$ $\mu = 0, \quad \sigma^2 = 1.0,$ $\mu = 0, \quad \sigma^2 = 5.0,$

Yuze Lou¹

Shucheng Zhong¹

nong¹ Jiaxin Wang¹

Problem Definition

- How can we apply node embedding methods to improve graph two-sample testing, i.e., determining if two populations of graphs are from the same distribution/random model?
- Evaluate various combinations of node embedding methods with hypothesis testing methods.

 Image:https://en.wikipedia.org/wiki/Normal_distributions

Use node embedding methods to improve graph two-sample testing

Motivation

- Current work on graph two-sample testing focuses on theoretical approaches and tests on simple features.
- Node embedding is useful in many graph mining problems, so it may also be helpful to represent nodes by vectors in graph two-sample testing.

Datasets

ER: Generated by Erdős–Rényi model.

|N| = 500, |E| = 6318.

• **SBM**: Generated by stochastic block model.

|N| = 500, |E| = 44,663.

Kronecker: Generated by stochastic kronecker model.

|N| = 512, |E| = 9838.

Arxiv GR-QC: Collaboration network from e-print arXiv.

|N| = 5242, |E| = 14496.

Arxiv Astro-ph: Collaboration network from e-print arXiv.

|N| = 18772, |E| = 198110.

Cornell University arXiv.org

References

[1] Béla Bollobás, Svante Janson, and Oliver Riordan. 2007. The phase transition in inhomogeneous random graphs. Random Structures and Algorithms 31, 1 (2007), 3–122. https://doi.org/10.1002/rsa.20168

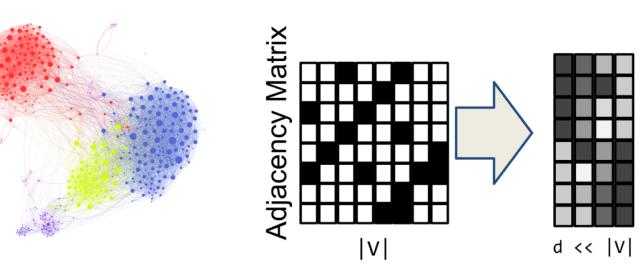
[2] Leonardo F.R. Ribeiro, Pedro H.P. Saverese, and Daniel R. Figueiredo. 2017. struc2vec. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD '17 (2017). 3097983.3098061

Our Approach

Step 1: Generate vector representation for nodes

Convert nodes to vectors with 2 and 128 dimensions. Node embedding methods include:

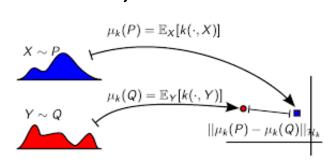
- node2vec
- struc2vec
- xNetMF
- GraphWave



Step 2: Apply hypothesis testing methods to vectors

Use vector embeddings as input of test methods, such as

• Maximum Mean Discrepancy $MMD[\mathcal{F}, p, q] := \sup_{f \in \mathcal{F}} \lim_{f \in \mathcal{F}} (\mathbf{E}_x[f(y)] - \mathbf{E}_y[f(y)]$

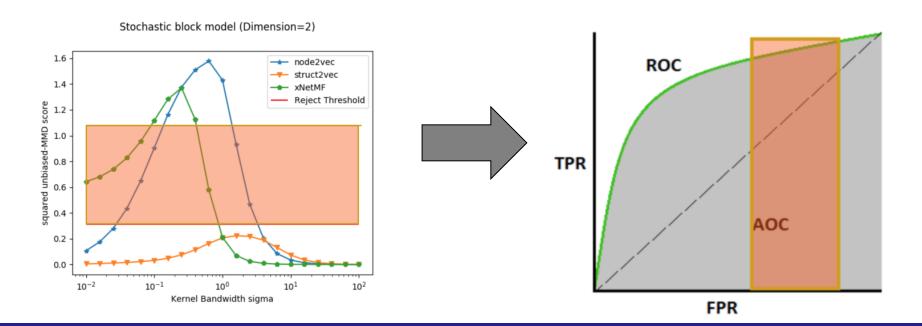


Adjacency Spectral Embedding

 $T_{ASE} = \min \{ ||X_G - X_H W||_F : W \in \mathbb{R}^{r \times r}, WW^T = I \}$

Step 3: Find the threshold of each testing method

Use AUC-ROC curve to try different thresholds and display the performance of our method.



Experimental Results MMD score with different kernel bandwidth Stochastic block model (Same Distribution) Stochastic block model vs Stochastic kronecker model node2vec+MMD → struct2vec+MMD Observation: We prefer a small MMD score for graphs from the same distribution (left figure) and a large score for graphs from different models (right figure). struc2vec outperforms other two embedding methods. AUC-ROC curve of unbiased MMD with different embedding methods AUCROC of struct2vec= 0.716240000000001 0.4 False Positive Rate

Conclusions

two embeddings.

 struc2vec+MMD provides the best performance over other embedding methods in low dimension.

Observation: With unbiased MMD, in terms

of AUROC, struc2vec also outperforms other

- Structural node embedding methods may not fit the two sample test since it is hard to interpret the distances between node embeddings
- Some heuristic methods may help the testing like using principal component analysis to reduce dimension in hypothesis test.