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Abstract

Vision-and-Language Navigation (VLN)
task requires the agent to navigate un-
der language instructions and vision
information in unknown environments.
The evaluation for end-to-end navigation
agents only considers their accuracy and
efficiency to arrive at navigation goals
but does not be aware of the agent’s abil-
ity in following the instructions. How-
ever, the agent’s capacity in grounding
landmarks in instructions to trajectory
points in environments reveals impor-
tant potential in instruction following, er-
ror correction, high-level instruction ex-
ecution, and so on. In this project, we
augment the Room-to-Room dataset with
landmark-trajectory point mapping us-
ing “Return to” instruction. We replicate
three state-of-the-art navigation agents
and analyze their performance in under-
standing the correlation of landmarks in
instructions and their references in envi-
ronments.

1 Introduction

As one of the most critical tasks in the field
of robotics, the Vision-and-Language Navi-
gation(VLN) task requires the agent to in-
terpret a given natural language instruction
and the visual observation of the surround-
ing environment to navigate to the given des-
tination. VLN task has a wide range of ap-
plications, including service robots, rescue
robots, and so on.

There is a rich vein of research addresses
challenges of VLN tasks, including visual-
textual co-grouding (Ma et al., 2019a), syn-
thetic data augmentation (Fried et al., 2018),
and the combination of imitation learning

and reinforcement learning (Wang et al.,
2019). Most of the navigation agents frame
the VLN task as a sequence-to-sequence
problem and widely accepted metrics for
navigation models include the Navigation Er-
ror(NE), Success Rate (SR), Oracle Success
Rate(OSR), and Success Rate Weighted by
Path Length (SPL) (Anderson et al., 2018a).
However, these metrics only measure the
accuracy of destination recognition and the
efficiency of the navigation plan, which sets
apart the roles that visual and language play
in the VLN task. This observation motivates
us to propose a new measurement to eval-
uate agents’ ability to ground landmarks in
natural language instructions to the object
references at each trajectory point.

In this project, apart from discussing
the performance of three state-of-the-art
models for traditional end-to-end navigation
with detailed instructions containing both
direction and landmark information, we
also build a Return Room-to-Room (RR2R)
dataset to explore the model’s ability in un-
derstanding the surrounding environment.
Instead of providing detailed step-by-step
navigation, RR2R dataset augments the orig-
inal Room-to-Room dataset with ["Return
to"] + [landmark] instructions to evaluate
the model’s ability to recognize landmarks
mentioned in the instructions. Specifically,
we aim to examine the effectiveness of the
vision and language co-grounding, which is
an important indication of an agent’s ability
to truly understand the environment.

The significance model’s ability for tra-
jectory point-landmark mapping lies in the
following two aspects. First, the original
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metric fails to measure the agent’s ability
to follow the trajectory path specified by
the natural language instruction, i.e. even
the agent gets a 100% navigation accuracy,
we could not tell whether the agent did
a good job in following the instruction or
just explore around and stop at the destina-
tion. Second, the better the trajectory point-
landmark recognition ability of the agent,
the more capable of the agent to recover
from navigation errors like local loops and
early stops. Therefore, we proposed trajec-
tory point-landmark as an evaluation met-
ric and compare the performance of three
state-of-the-art models (Ma et al., 2019a,b;
Anderson et al., 2018b) this metric.

To sum up, our contribution is twofold.
First, we augment the Room-to-Room1

dataset with landmark-trajectory point map-
ping and construct RR2R dataset. Second,
we replicate three state-of-the-art models:
seq2seq2, self-monitoring agent3, and regret-
ful agent4. We compare their performance in
both the original metrics and the new land-
mark metric.

2 Problem Definition

In the VLN task, the agent begins with a nat-
ural language instruction x̄ = 〈x1, x2, · · ·xL〉.
The agent performs navigation in the envi-
ronment with a set of 3D points V . Each tra-
jectory point v ∈ V is comprised of a set of 18
panoramic RGB-D images. At each time step
t, the sensor returns a RGB image ot, based
on the current trajectory position vt, the
heading φ ∈ [0, 2π) of the agent, and the cam-
era elevation θ ∈ [−π

2 ,
π
2 ]. The action space

contains 6 actions left, right, up, down,
forward, stop. The status of the agent is
represented by a triple st = 〈vt, φt, θt〉. Ac-
cording to the current status, the agent se-
lect an action at, leading to a new status
st+1 = 〈vt+1, φt+1, θt+1〉. The navigation pro-

1https://bringmeaspoon.org
2https://github.com/peteanderson80/

Matterport3DSimulator
3https://github.com/chihyaoma/

selfmonitoring-agent
4https://github.com/chihyaoma/

regretful-agent

cess of an agent is sequence of status and
actions 〈s0, a0, s1, a1, · · · , sT , aT 〉.

The augmented RR2R dataset aims to test
the agent’s ability in recognizing landmarks
in the instructions. We define a set of land-
marks M = 〈m1,m2, · · · ,mi〉 in the environ-
ment. At the end of each instruction, the
augmented instructions are “x̄+ [Return to]
+ [mi]”, where mi is a landmark in the previ-
ous trajectory path specified by the original
instruction x̄. Each landmark is mapped to
a trajectory point vmarkedi . To evaluate the
agent’s ability to return to the landmark, we
compare the success rate(SR) and oracle suc-
cess rate(OSR) of different navigation agents
in returning to the landmarks after the exe-
cution of original instructions.

3 Related Work

In this project, we explore the perfor-
mance of three end-to-end navigation agents:
seq2seq (Anderson et al., 2018b), self-
monitoring agent (Ma et al., 2019a), and
regretful agent (Ma et al., 2019b).

3.1 Seq2seq

In (Anderson et al., 2018b), the seq2seq
model is proposed as the baseline for the
R2R navigation task. LSTM (Hochreiter and
Schmidhuber, 1997) network and ResNet-
152 (He et al., 2016) for language and im-
age encoding. Attention mechanism (Luong
et al., 2015) is used to compute attentional
hidden state and calculate the predictive ac-
tion distribution. Seq2seq introduces two
training regimes, the “teacher-forcing” and
the “student forcing”. Since in our RR2R
dataset, the testing dataset has the same
distribution as the training dataset. There-
fore, we adopt the “teacher-forcing” training
approach, which means that at each step
during the training process, we choose the
ground-truth target action at∗ as the input.

3.2 Self-Monitoring

Self-monitoring agent (Ma et al., 2019a)
introduces a visual-textual co-grounding
module to locate the instruction completed
in the past and use the progress monitor

https://bringmeaspoon.org
https://github.com/peteanderson80/Matterport3DSimulator
https://github.com/peteanderson80/Matterport3DSimulator
https://github.com/chihyaoma/selfmonitoring-agent
https://github.com/chihyaoma/selfmonitoring-agent
https://github.com/chihyaoma/regretful-agent
https://github.com/chihyaoma/regretful-agent
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to estimate the monitoring progress. In
the co-grounding model, the authors use
LSTM to encode the current panoramic im-
age, instruction feature, and the previously
selected action for action selection. The
progress monitor introduces an objective
function during the training process served
as a regularizer to prune unfinished trajec-
tories during the inference. Experimental
evaluations indicate that the self-monitoring
agent outperforms the seq2seq baseline in
both seen and unseen environments.

3.3 Regretful Agent

In the regretful agent, a progress monitor
is introduced so that the agent’s progress
towards the goal is monitored. The out-
puts of the agent will decrease or fluctu-
ate if the agent selects an action leading
to deviation from the goal, increase if the
agent moves closer to the goal. Based on
the feedback provided by the progress mon-
itor provides, the agent can select the ac-
tion. The agent can regret and backtrack
using a Regretful Module and a Progress
Marker. Regretful Module examines the
progress made from the last step to the cur-
rent step to decide whether to take a for-
ward or rollback action. Once the agent re-
grets and rolls back to the previous location,
the Progress Marker informs whether loca-
tion(s) have been visited before and rates the
visited location(s) according to the agent’s
confidence in completing the instruction-
following task (Ma et al., 2019b)

The regretful agent proposed (Ma et al.,
2019b) outperforms the previous models
such as self-monitoring agent (Ma et al.,
2019a), Student-forcing model (Anderson
et al., 2018b), and Speaker-Follower (Fried
et al., 2018) on both SR and SPL metrics.

4 Proposed Method

4.1 RR2R Dataset

The RR2R dataset used in our experiment
augments from the R2R dataset5. R2R
dataset is the first benchmark dataset for

5https://bringmeaspoon.org

visually-grounded language navigation in
real building (Anderson et al., 2018b) (Chang
et al., 2017). The entire dataset contains 90
scenes, 61 for training, and validation saw
11 for validation unseen and 18 for test un-
seen.

We augment the dataset by adding return
instructions to the dataset. These involve
3 main steps: (1) Pick proper intermediate
landmarks; (2) Construct return trajectory
path; (3) Modify linguistic instructions.

At first, we decide to directly pick nouns
in the original instructions. However, we
find many nouns cannot be selected as land-
marks. Some examples are "room" and
"door", which are too general for the agents
to specify one. Also, we find "stair" is a bad
landmark, because one stair covers a few tra-
jectory points, and it is hard for the agents to
determine one to stop. Therefore, we finally
decide to manually select a few landmarks
in two rooms6.

Then, based on the landmark we selected,
we start to construct a return path from the
terminal point back to this landmark. Sup-
pose the original starting point is A, and
the original terminal point is B, while the
landmark we selected is C between A and B.
Then, the rough path will concatenate the
trajectory points from A to B and the points
from B back to C. For the first part, we can
directly use the original trajectory points.
For the second part, we have to determine
the corresponding trajectory point for the
landmark, and we inversely enumerate the
trajectory points to obtain the second half
path. demonstrates a series of closed tra-
jectory points for the landmark: the brown
chairs. We finally pick the bottom right one.
These images are all from the Matterport
dataset.

Finally, we start to modify the linguistic
instructions. We also do this manually to
keep the quality of instructions. First, we
add "Return to the [landmark]." at the end
of the instruction sets, where "[landmark]"
is the intermediate object we selected. Then,

6The room IDs we selected are 1LXtFkjw3qL and
17DRP5sb8fy in the training dataset.

https://bringmeaspoon.org
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Figure 1: Four candidate trajectory points
for the landmark "brown chairs." We manually
check the position of the brown chairs and deter-
mine which trajectory point best describes the
landmark. We finally choose the bottom right
one since it is closest to the camera.

we replace the stop words with other verbs.
The stop words include "stop", "wait". We
replace them because we do not want the
agent to stop at the previous terminal point
because of these words. Finally, we add
some conjunctions to formulate natural in-
structions. An example of conjunctions is
"and", "then", etc.

We attach an example of the original in-
struction and modified instruction. In attach-
ment, List 3 is the RR2R dataset with the
returning instructions ("Return to the stone
statue") corresponding to List 2.

4.2 Train/validation dataset split

With our RR2R dataset, the next step is to
create the proper train/validation split. The
models introduced above are proposed for
the VLN tasks, so we do not expect the mod-
els to be able to roll back simultaneously. In
other words, training is necessary for the
models to be able to roll back even if the
agents understand the intermediate land-
marks. However, we only manually label
2 rooms for returning instructions, while
there are 61 rooms in the originally seen
dataset and 11 rooms in the original unseen
validation dataset. How to train the agents
with the return function while evaluating the
agent’s ability on normal VLN tasks is hard

given that we have limited data.

We propose 3 different training datasets to
help the models learn rollback instructions.
These training datasets are as follows.

1. Only 2 rooms with original and return
instructions

2. 2 rooms with original and return instruc-
tions, other rooms with original instruc-
tions

3. Similar to 2, but we balance the number
of return instructions versus original in-
structions by repeating return instruc-
tions in the dataset.

Therefore, in the following experiments,
we first use the seq2seq model to determine
a good train/validation dataset split. After
that, we use the selected split to train all
3 models and record their rollback perfor-
mance.

4.3 Evaluation Metrics

We are interested in the agents’ ability to rec-
ognize the intermediate landmarks. We use
the accuracy of the models on the dataset
with return instructions to illustrate such
ability, which is the validation seen dataset
in our experiment. There were other met-
rics used by the original VLN tasks, such as
path length and oracle success rate. For sim-
plicity, we do not use these metrics in our
experiment.

Meanwhile, we do not want the agents to
lose the ability on original VLN tasks. There-
fore, we also use the accuracy on datasets
without return instructions to measure such
abilities, which is our validation unseen
dataset in this experiment.

Ideally, after training, the agents should
have high accuracy on the validation seen
dataset with return instructions, meaning
the agents understand the intermediate land-
marks. Also, the agents should have accu-
racy comparable with the original model on
the validation unseen dataset without return
instructions, meaning the agents do not lose
the ability on original VLN tasks.
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category seen acc (R) unseen acc (NR)

(1) 0.444 0.097

(2) 0.413 0.188

(3) 0.635 0.159

Baseline7 N/A 0.209

Table 1: Seq2seq performance on roll back(R) in-
structions in seen dataset and without roll back
(NR) instructions in unseen dataset.

5 Experiments and Analysis

We train three models (1) seq2seq (2) Self-
monitoring Agent (3) Regretful Agent on the
RR2R dataset we proposed above. As men-
tioned, we first test which train/validation
split leads to the best train performance on
the rollback task. Then we test the rollback
performance on those 3 models with the best
train/validation split found.

5.1 Train/validation Split Result

During training, we monitor the accuracy of
the model on validation dataset to determine
the roll back ability and the ability to follow
instruction. Specifically, there are two val-
idation dataset: seen and unseen one. The
unseen validation dataset is the same as the
original R2R validation dataset. The seen
one consists of return and original instruc-
tions in the 2 rooms we manually labelled
above. The result is shown in Table 1. In the
table, "R" means dataset with return instruc-
tions, while "NR" means dataset without re-
turn instructions.

From Table 1, we observe two phenomena:

1. With the proportions of rollback in-
structions increasing in the training
dataset, the accuracy of the agents on
return instructions increases, meaning
the agents learn the rollback operation
with our training dataset.

2. With the rollback instructions involved
in the training dataset, the accuracy
of the agents on original instructions

7The baseline does not train with return instruc-
tions. Therefore, validation result on the seen dataset
with return instructions is not meaningful.

decreases, meaning the return instruc-
tions in the training dataset influence
the agents’ ability on following normal
instructions.

We expect the first phenomenon because
intuitively, training with rollback instruc-
tions will increase its ability to rolling back
and return to particular landmarks. On the
other hand, the rollback instruction sets are
different from the original ones. Specifically,
the return instruction sets add one sentence
to the instructions, while they add many tra-
jectory points to the paths, leading to a den-
sity discrepancy between the path and in-
struction for two sets. This may bring dif-
ficulties for model learning and lead to the
second phenomenon mentioned above. Fig-
ure 2 shows the density discrepancy.

Figure 2: Example of density discrepancy be-
tween return and original instruction. Adding
one sentence "Return to the painting" leads to
many new trajectory points on path.

Therefore, we adopt the third training
dataset to ensure the model learns the re-
turn functions without losing too much abil-
ity on normal navigation.

5.2 Performance of Models on RR2R
Dataset

We trained the previous 3 models with the
dataset in the last section, and we record
their performances on both datasets with
return instructions and the original unseen
validation dataset. Table 2 demonstrates the
results.

From Table 2, we observe that as the
current state-of-the-art, the regretful agent
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model acc(R) acc(NR)

seq2seq 0.635 0.159

self-monitoring 0.508 0.127

regretful-agent 0.436 0.459

Baseline8 N/A 0.209

Table 2: 3 models performance on datasets with
(R) /without (NR) roll back instructions.

does best on the original unseen validation
dataset, which is expected. However, we
have two other interesting findings. First,
we observe that all of these 3 models are
not able to fully recognized the intermediate
landmarks, and specifically, the state-of-the-
art model does worse in recognizing interme-
diate landmarks, leading to a worse accuracy
on the seen validation dataset with rollback
instructions. Second, the self-monitoring
agent has a very low unseen validation accu-
racy. We will discuss these two observations
below.

For the first observation, we take a further
look at the path generated by each model.
We observed that for the seq2seq model, the
model tends to stop at the intermediate land-
mark rather than following the instructions
and return in the end. On the other hand,
the other two models seem to be able to re-
turn based on the path they output on the
validation seen dataset. We analyze this phe-
nomenon, and we believe this is because of
the property of the seq2seq model. Namely,
since the seq2seq model processes the in-
struction entirely at the encoder stage, it
might weight more on the beginning point
and the ending point, leading to the agent
terminates earlier. List 1 gives an example
of early terminate behavior for the seq2seq
agent.

The second phenomenon is out of our ex-
pectations. We check the original Github,
finding other researchers also have diffi-
culties replicate this result9. The problem
might be related to tuning the model with
proper parameters. We are working on a
solution. 10

10https://github.com/chihyaoma/
selfmonitoring-agent/issues/11

Listing 1: Early terminate behavior for seq2seq
agent. We expect the agents to go pass the point
77a1a11978b04e9cbf74914c98578ab8 and
roll back to this position, but the agent directly
stops here.

1 {" instr_id " : "322801_1" ,
2 " trajectory " : [
3 ["6800f98e9e67463e9928a4253253bc2f" ,

2.617993877991494, 0.0] ,
4 ["10c252c90fa24ef3b698c6f54d984c5c" ,

2.617993877991494, 0.0] ,
5 ["10c252c90fa24ef3b698c6f54d984c5c" ,

2.0943951023931953, 0.0] ,
6 ["10c252c90fa24ef3b698c6f54d984c5c" ,

1.5707963267948966, 0.0] ,
7 ["77a1a11978b04e9cbf74914c98578ab8" ,

1.5707963267948966, 0.0]]}

6 Conclusion and Future Work

Vision-and-Language Navigation (VLN) is
one of the critical tasks in the field of
robotics. Current evaluation metrics for
end-to-end models lack a measure of the
agents’ ability in grounding intermediate
landmarks in instructions to their references
in environments. We augment the Room-
to-Room dataset with “Return to + [land-
mark]” instructions and replicate three state-
of-the-art navigation agents: seq2seq, self-
monitoring agent and the regretful agent.
We evaluate the navigation success rate and
oracle success rate of these agents in return-
ing to intermediate landmarks.

From the evaluation result, we come to
the following main conclusions:

1. Although we have the density discrep-
ancy problem between instructions and
trajectory points, it is still possible to
train an agent with roll-back modified
path and linguistic instructions. In these
three models, they are all be able to stop
at the intermediate landmarks we intro-
duced in the dataset.

2. Seq2seq agent sometimes does not re-
turn to the landmarks; it stops at the
landmarks instead. This is possible due
to the structure of seq2seq model, which
deals with the linguistic instruction com-
pletely ahead of vision and actions.

3. The regretful agent and self-monitoring
agent have lower accuracy than

https://github.com/chihyaoma/selfmonitoring-agent/issues/11
https://github.com/chihyaoma/selfmonitoring-agent/issues/11
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seq2seq, while theoretically, they
should be better since they utilize the
progress monitor to ground instructions
with the visual environment. Although
this might be caused by the seq2seq
early terminate behavior, it is still
possible for these 2 agents to increase
their rollback abilities.

Also, we realize that there are some draw-
backs to the current experimental design.
With the limited data, there are several ex-
tra variables between the return dataset and
the original dataset. First, the augmented
dataset only consists of 2 rooms, while the
training dataset consists of 61 rooms, mean-
ing 59 rooms are unattended in the valida-
tion seen dataset. Second, the return in-
structions are all in the seen environment,
while the original instructions are all in the
unseen environment, meaning we cannot di-
rectly compare the accuracy between these
two datasets. And finally, it would be bet-
ter if we have a test dataset, rather than
using a validation dataset to demonstrate its
performance.

The key problem we faced is still the
amount of work for manually labeled data.
We are trying automatic augment data gener-
ator, e.g. using the object detector to find the
correct trajectory points for landmarks, and
generating the roll-back linguistic instruc-
tions as well. With the automatic augment
dataset, the future work is to systematically
test the ability of roll-back in different mod-
els.
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7 Attachment

Listing 2: Example of the original R2R dataset

1 {
2 "distance " : 7.54,
3 "scan" : "1LXtFkjw3qL" ,
4 "path_id " : 7238,
5 "path " : [
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6 "a3fe827d49db4f7caa076c313434d418" ,
7 "e0f025c0baa94beba57ea499e3d846c5" ,
8 "6ab39d830183407cb7ec17206889000d" ,
9 "74d5b2290be74a1ba052b6fe2320e064" ,

10 "e8e2d73795e54b6db89cd32745e79fb9"
11 ] ,
12 "heading" : 1.739,
13 " instructions " : [
14 "Go to the bottom of the stairs and

turn le f t . Walk along the orange
wall , past the stone statue , and
go through the doorway. Turn le f t
and stop at the top of the steps
leading down. " ,

15 "Go down the stairs , and take a le f t .
Go around the dining table and
exit through the door on the le f t .
Go down the three stairs and stop
at the bottom of the stairs . " ,

16 "Go downstairs . U turn le f t . Go
straight and then turn le f t . Wait
near the double white doors . "

17 ]
18 },

Listing 3: Example of the RR2R dataset

1 {
2 "distance " : 7.54,
3 "scan" : "1LXtFkjw3qL" ,
4 "path_id " : 723800,
5 "path " : [
6 "a3fe827d49db4f7caa076c313434d418" ,
7 "e0f025c0baa94beba57ea499e3d846c5" ,
8 "6ab39d830183407cb7ec17206889000d" ,
9 "74d5b2290be74a1ba052b6fe2320e064" ,

10 "e8e2d73795e54b6db89cd32745e79fb9" ,
11 "74d5b2290be74a1ba052b6fe2320e064" ,
12 "6ab39d830183407cb7ec17206889000d"
13 ] ,
14 "heading" : 1.739,
15 " instructions " : [
16 "Go to the bottom of the stairs and turn

le f t . Walk along the orange wall ,
past the stone statue , and go through
the doorway. Turn le f t and go to the
top of the steps leading down.

Return to the stone statue . " ,
17 "Go to the bottom of the stairs and turn

le f t . Walk along the orange wall ,
past the stone statue , and go through
the doorway. Turn le f t and go to the
top of the steps leading down.

Return to the stone statue . " ,
18 "Go to the bottom of the stairs and turn

le f t . Walk along the orange wall ,
past the stone statue , and go through
the doorway. Turn le f t and go to the
top of the steps leading down.

Return to the stone statue . "
19 ]
20 },


