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1 ABSTRACT

Graph two-sample testing has been an important tool in applied
research fields for decades. However, statistical methods of hypoth-
esis testing to graph structured data are still very challenging as
it is hard to figure out what to take to reject the null hypothesis
that two graphs come from the same distribution or not. Recent
studies in statistics and learning theory use graph explicit proper-
ties such as degree distribution and triangle counts to distinguish
whether graphs are from the same or different populations, but the
practicality of the developed theoretical methods remains an open
question.

In our project, we propose a novel method to solve graph two-
sample testing problem by combining node embedding methods and
statistical two-sample test methods. We have evaluated our method
with multiple node embedding methods and conduct experiments
on both synthetic datasets and real datasets. We look closely on the
performance of each node embedding methods and compare the
results with the prior work to demonstrate the effectiveness of our
method.

2 INTRODUCTION

In many tasks, it is important to understand structural distribution
information in graph structured datasets. Sometimes we are inter-
ested in whether two populations of graphs come from the same
distribution/graph model or not. For example, given two brain
graphs, since the data are collected from different patients, the
graphs are different from each other. To determine whether the
brains are healthy or not, it is helpful to know if the differences
are statistically significant. Therefore, we need graph two-sample
testing to determine if the graphs are from the same distribution.

The definition of graph two-sample testing is described as fol-
lows. Let V be a set of n vertices. Let Gy, -+ ,G;, and Hy, -+ , Hip,
be two populations of undirected unweighted graphs defined on the
common vertex set V, where each population consists of indepen-
dent and identically distributed samples. Graph two-sampling test
is to verify whether (G;)i=1,...,m and (H;);=1,...,m are generated
from the same random model or not [5].

The prior work on graph two-sample testing mainly utilizes
the explicit properties of graphs such as adjacency matrix, node
distribution and triangle counts [3][4]. Adjacency spectral embed-
ding(ASE) test [11] is one of those methods that is widely used to
solve graph two-sample testing. Given the adjacency matrix Ag of
graph G, adjacency spectral embedding is defined by

X6 = Uz’ (1)

where 3 € R™" is a diagonal matrix containing r largest singular
values of Ag and Ug € R™ is the matrix of corresponding left
singular vectors. Then the test statistic proposed by adjacency
spectral embedding test of two graph G and H is

Tasg = min{||Xg — XgWllp : W e R WwT =1}, (2)

where rank r is assumed to be known. The rotation matrix W aligns
the adjacency spectral embeddings of the two graphs.

Alternatively, instead of focusing on simple graph features, we
want to take advantage of the power of node embedding that can
represent rich graph information to improve graph two-sample
testing. Let G = (V, E) be a given network. Node embedding is a
function f : V — R? that maps nodes to feature representations,
where d is a parameter specifying the number of dimensions of our
feature presentation [6]. The structural equivalence information
represented by node embedding is likely to help improve the ac-
curacy of two-sample test. Limited prior work has been done on
graph two-sampling test using node embedding, so it is worth study-
ing and conducting extensive experiments on different embedding
methods.

3 PROPOSED METHOD

Our approach is to try combinations of different node embedding
methods with different test methods to see if they can improve
graph two-sample test. We used the node embedding methods to
generate vector representations for nodes and applied them to graph
two-sample testing methods. Therefore, the method is divided into
two parts: embedding and testing.

3.1 Embedding

For node embedding methods, we tried methods that focus on node
representation and proximity similarity (node2vec [6]) as well as
those focusing on structural similarity (struc2vec [10], xNetMF
[7] and GraphWave [2]). The embedding methods focus on these
different features and assign a vector on each nodes. Therefore, the
embedding methods numerically describes features in a graph.

It is worth noting that in our previous report, we apply the
embedding methods directly on given edge-list for each graph,
which focuses on their local features only and is subject to the
noise issue introduced by different graphs, leading to a poor result.
With the suggestions from instructors, we concatenate the edge-
lists for two graphs and jointly embedding them, reaching a much
better result. We will introduce this in details in experiment section.

3.2 Testing

We first fixed the test method to be unbiased MMD, and investigated
how well each embedding method worked with unbiased MMD.
Then we picked embedding methods that work well in the previous
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step, and applied it to ASE test to further study which test method
performs the best with node embedding.

MMD is a distance measure between two distributions which is
defined as the squared distance between their embeddings in the
reproducing kernel Hilbert space. Unbiased MMD is an unbiased
empirical estimation of the value of MMD. Let ¥ be a class of
functions f : X — R. Let p, q be two distributions and x, y are the
samples from distribution p, g. Then MMD is defined as:

MMD[F,p,q] = sup}ien%(Ex [fW)] - Ey[f])

A unit ball in a reproducing kernel Hilbert space H is used as the
MMD function class 7. By the Riesz representer theorem, there ex-
ists a feature mapping ¢(x) : X — Rsuch that f(x) =< f, p(x) > 4.
¢(x) takes the canonical form k(x, -), where k(x1,x2) : X XX = R
is positive definite, and the notation k(x, -) indicates the kernel has
one argument fixed at x, and the second free. Then the unbiased
empirical estimate of squared population MMD can be written as:

MMDZ[TvP’ q] = Ex x[k(x,x")] - 2Ex y[k(x, y)] + Ey o [K(y, y)]

Let 0 < k(- -) < K and m is the sample size of x and y. A hypothesis
test of type-I error level « for the null hypothesis Hy : p = g has
the acceptance region

MMD? < (4K /\/m) [log(a™1),

where « is the upper bound probability that Hy is rejected while
actually being true.

We have introduced the classical ASE[5] test in the introduction
part. In short, ASE test uses adjacency matrix decomposition and
matrix multiplication to generate node embeddings. Then, the ASE
test adopts the idea of using a rotation matrix W to align two
embeddings. This is particularly useful when the embedding does
not keep rotation invariant, which is not guaranteed by most of
the embedding methods. Thus, we believe this is a good baseline
method that can be used in evaluating performances of our methods.

As a conclusion, for graph two-sample test, we applied the rep-
resentation vectors as input to unbiased MMD, biased fast MMD,
and MMD linear respectively. We evaluated the node embedding
methods and the extent of improvement in graph two-sample test
by applying those methods.

4 EXPERIMENTS

4.1 Data

Synthetic datasets: As described in the proposal report, we used
inhomogenous Erdés—Rényi model proposed by Bollobas [1] to
generate random graphs and stochastic block model to synthesize
graphs that contain community information. To simulate the graphs
in real world, stochastic kronecker graph [9] is also used in our
experiments.

« ER: Generated by Erdés—Rényi model with batch size of 10.
Each containing 500 nodes with edge probability of 0.05.

« SBM: Generated by stochastic block model with batch size
of 10. Containing 3 blocks with 75, 75, and 350 nodes re-
spectively. The internal edge probability is 0.75, and edges
between nodes in different blocks have probability of 0.05.
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« Kronecker: Generated by stochastic kronecker model with
batch size of 10. The initiator matrix is [0.98,0.58;0.58,0.06]
and each contains 512 nodes.

Real datasets: Previous research of graph two-sampling test mainly
focused on synthetic datasets, so we also applied our methods to
real datasets.

« Arxiv GR-QC [8]: Collaboration network from the e-print
arXiv covering scientific collaborations between authors
papers submitted to General Relativity and Quantum Cos-
mology category. Containing 5,242 nodes and 14,496 edges.

« Arxiv ASTRO-PH [8]: Collaboration network from the e-print
arXiv covering scientific collaborations between authors pa-
pers submitted to Astro Physics category. Containing 18,772
nodes and 198,110 edges.

4.2 Experiment setup

We have run 3 experiments to test the performance of our proposed
methods.

« Experiment 1 tests various combinations of different hyper-
parameters, node embedding methods and testing methods.

« Experiment 2 compares the performance of our proposed
method with the baseline, adjacency spectral embedding
testing.

« Experiment 3 tests the robustness of our method using real
datasets with random noise involved.

4.3 Embedding method and MMD parameter
selection
The embedding methods we used are:

(1) node2vec

(2) struc2vec

(3) xNetMF

(4) GraphWave
And the testing methods we used are

(1) MMD

(2) FastMMD-FastFood

(3) MMD-linear
In terms of the embedding dimension, we have tried several options
from dimension 2 to dimension 128, and finally set our embedding
dimension to be 2 since it makes our method much faster without
losing too much accuracy.

As mentioned in the method section, to ensure the embedding
methods are capturing comparable features of nodes from two
graphs, in this final report we concatenate the edge-list of two
graphs together. To be specific, given two graphs G and H with
number of nodes [Ng|, |[Ng| and number of edges |Eg|, |Eg|, we
will put the graphs together to get one graph with number of
nodes |[Ng| + |Ng| and number of edges |Eg| + |Eg|. This graph is
a two-component graph; two original graphs are separated with
each other, i.e. have no edges connecting them. Therefore, the
concatenation preserves order of nodes, and after embedding, we
can recover the graphs by the index of nodes.

Then, we apply the embedding methods on preprocessed edge-
lists mentioned above, and we use the unbiased MMD test to see
the effectiveness of this testing method with different parameters,
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Figure 1: Separate embedding results for node2vec
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Figure 2: Separate embedding results for struc2vec

namely kernel bandwidth 0. We conducted the experiments on the
synthetic datasets we generated. The group of embedding results
are

(1) ERvsER

(2) ER vs SBM

(3) ER vs Kronecker

(4) SBM vs SBM

(5) SBM vs Kronecker

(6) Kronecker vs Kronecker

For the unbiased MMD test, we applied radial basis function(RBF)
as our kernel function and took the kernel bandwidth ¢ ranging
from 1072 to 102. The upper bound of type-I error probability « in
the test is 0.05. Finally, we set the sample size to 500 and repeated
the experiment 10 times to take the average of the results as our
MMD scores.

We applied those pairs above to MMD, obtaining MMD scores. By
comparing the scores of MMD, we could gain insight on which em-
bedding method and bandwidth o works best on current datasets.

4.3.1 Embedding results. In midterm report, we do the embedding
directly on graphs. Figure 1 and Figure 2 give examples of those
embeddings. In each of them, all images come from different distri-
butions.

Now we do jointly embeddings on pairs of graphs that we want to
compare. Figure 3 and Figure 4 give examples of those embeddings.
In each of them, left two images come from same distribution, and
right two images come from different distributions.

We will see if separate embedding or joint embedding does better
when we feed the embedding results to the MMD test method.

4.3.2  MMD results and parameter selection. After we obtain the
embedding results, we can feed these embedding vectors to MMD
with different kernel bandwidth o to see which parameter setting
can tell the differences between graphs from same distribution and
graphs from different distributions. If the method provides a high
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Figure 4: Joint embedding results for struc2vec
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Figure 5: Joint embedding results for node2vec

score on different distributions and a low score on same distribution,
then we consider this method to be effective.

We first try the separate embedding methods. The result is shown
in Figure 5.

Figure 5-7 describe performances of MMD with different o on
graphs from different distributions.

Figure 8-10 describe performances of MMD with different ¢ on
graphs from same distribution.

Based on results from Figure 5-7, it seems xNetMF, node2vec
and struc2vec all provide a high score at different regions of kernel
bandwidths, which is our findings in the midterm report. However,
after considering results from Figure 8-10, it turns out node2vec
usually provides a high score regardless of where the graphs are
from. Therefore, node2vec is not a good embedding method on this
graph two-sample test task. On the contrary, xNetMF and struc2vec
have significant differences between two cases, indicating that they
are probably good candidate methods for our task.

Meanwhile, we consider the performance of MMD and its vari-
ants. Based on our results, while the fast-MMD seems perform a
little bit better, these three test are hard to distinguish. Therefore
we can apply any of them in this task.

Finally, we analyze on good bandwidth setting for MMD. Based
on the images, xNetMF works when MMD bandwidth o satisfies
1072 < ¢ < 1, while it works best when 1072 < ¢ < 0.3. The
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Figure 7: MMD scores comparing SBM with kronecker
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Figure 8: MMD scores comparing ER with kronecker
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struc2vec works when 0.5 < ¢ < 20, and it works best when
1 < 0 < 10. Notice that they work at different bandwidth regions,
and more importantly, the struc2vec provides incorrect result at
MMD low bandwidth(high score on same distribution and vice
versa), indicating that bandwidth is an important factor in this task.

4.4 Baseline test

To measure the performance of our method, we compare the results
with adjacency spectral embedding test. However, during the exper-
iments, we found that using the synthetic datasets mentioned in the
section 4.1, both two methods can achieve extremely high accuracy.
Therefore, we generated another two populations of datasets using
Erd6s—Rényi model for this experiment. Two populations contain
100 nodes in each dataset and the size of each population is 10. For
the first population, the probability p of having an edge between
two nodes is 0.5 and p = 0.4 in the other population.

Since we have already verified that embedding methods node2vec
and Graphwave fails to give useful embedding results for the null hy-
pothesis test, we omitted these two methods and only compared ad-
jacency spectral embedding test with embedding method struc2vec
and xNetMF. The threshold of passing the null hypothesis test is
MMD? < 0.48 given the error level « to be 0.05. Then we ran our
method and adjacency spectral embedding test within and between
two populations to count the occurrences of Type-I and Type-II
errors. The results are shown in Table 1.

ASE | struc2vec+MMD | xNetMF+MMD

Type-I error rate | 0.0 0.0 0.28

Type-II error rate | 0.62 0.18 0.09
Table 1: Result of baseline test

Add analysis here

4.5 Robustness test against random noise

We tested how effective our testing method is in the presence of
noise and investigated how the testing result will change with
the increasing amount of noise. In this experiment, We use 2 real
datasets: Arxiv GR-QC and Arxiv ASTRO-PH to generate semi-
synthetic graphs with noise. We adopted the random edge flipping
as our noise. Given a edge list, we set false positive (fp) to be
the probability of connecting two unconnected nodes and false
negative (fn) to be the probability of erasing an existing edge.
We then generated semi-synthetic graphs of Arxiv GR-QC with
different fn and fp parameters. We ran our method to compare the
real Arxiv GR-QC and the generated Arxiv GR-QC with noise and
also compared the real Arxiv GR-QC with the real Arxiv ASTRO-
PH as the control groups. We only ran the tests on struc2vec and
xNetMF based on the reason mentioned in section 4.4.

4.5.1 Test results. Add test result and analysis here

5 RELATED WORK

Related works are divided to node embeddings and graph two-sample
test respectively.
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Node embedding: Let G = (V, E) be a given network. Node
embedding aims to find an effective function f : V — R? mapping
nodes to feature representations, where d is a parameter specify-
ing the number of dimensions of our feature presentation. Previ-
ous work purposed tests based on relatively simple features like
eigenvalue distribution, while currently, several related work pur-
posed different embedding methods, such as struc2vec which fo-
cuses on structural similarity between nodes regardless of their
distances, LINE coping with arbitrary type of large-scale networks,
and node2vec which learns the similarity brought by proximity
of nodes in the graphs. Although each of the method has its own
advantages on dealing with certain kinds of graphs, neglecting
some kind of similarity may lead to inferior results. The power of
different node embedding methods on distinguishing graphs is still
worth exploring.

Graph two-sample test: Let V be a set of n vertices. Let Gy, - - - , G

and Hy,-- -, Hp be two populations of undirected unweighted
graphs defined on the common vertex set V, where each popu-
lation consists of independent and identically distributed samples.
Graph two-sampling test is to verify whether (G;);=1,...,m and
(Hi)i=1,-.-,m are generated from the same random model or not.
There have been many famous and successful tests in the history
such as ASE test, MMD test and etc. However, the size of the ob-
servations and the size of graphs can degrade the power of those
tests to a certain degree. Moreover, the impact of applying novel
node embedding methods on those tests has not been thoroughly
explored yet.

6 CONCLUSION
7 DIVISION OF WORKS

The following division of works only regards to the work already
done, not including future work.

Jiaxin is responsible for applying GraphWave to our dataset and
generating corresponding embeddings. Qiucheng collects informa-
tion about xNetMF and use it to generate embeddings on the same
dataset. Yuze is responsible for node2Vec. Shucheng is responsible
for struc2Vec and applying all the embeddings to unbiased MMD.
We also write the report together.
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